Properties

Label 508032.a.28224.e1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{6} \cdot 3^{2} \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(28224\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,14,9,13,4,16)(2,10,5,18,8,11)(3,12,7,17,6,15), (10,18,11)(12,17,15)(13,16,14), (1,4,9)(2,8,5)(3,6,7)(10,11,18)(12,15,17)(13,14,16)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $\SOPlus(4,8)$
Order: \(508032\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8)^2:C_6$, of order \(1524096\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_9$
Normalizer:$S_3\times D_9$
Normal closure:$\SOPlus(4,8)$
Core:$C_1$
Minimal over-subgroups:$S_3\times C_9$$C_3\times D_9$$S_3^2$
Maximal under-subgroups:$C_3^2$$C_6$$S_3$

Other information

Number of subgroups in this conjugacy class$4704$
Möbius function$0$
Projective image$\SOPlus(4,8)$