Subgroup ($H$) information
Description: | $C_{13}:C_3$ |
Order: | \(39\)\(\medspace = 3 \cdot 13 \) |
Index: | \(13\) |
Exponent: | \(39\)\(\medspace = 3 \cdot 13 \) |
Generators: |
$a, bc^{4}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Ambient group ($G$) information
Description: | $C_{13}^2:C_3$ |
Order: | \(507\)\(\medspace = 3 \cdot 13^{2} \) |
Exponent: | \(39\)\(\medspace = 3 \cdot 13 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{13}^2.\GL(2,13)$, of order \(4429152\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \cdot 13^{3} \) |
$\operatorname{Aut}(H)$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$\operatorname{res}(S)$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$W$ | $C_{13}:C_3$, of order \(39\)\(\medspace = 3 \cdot 13 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $13$ |
Möbius function | $-1$ |
Projective image | $C_{13}^2:C_3$ |