Properties

Label 504.156.72.a1.a1
Order $ 7 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(7\)
Generators: $\langle(1,5,7,8,6,2,4)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $\SL(2,8)$
Order: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(7\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_7$
Normalizer:$D_7$
Normal closure:$\SL(2,8)$
Core:$C_1$
Minimal over-subgroups:$F_8$$D_7$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$2$
Projective image$\SL(2,8)$