Properties

Label 50000000.fd.390625.a1.a1
Order $ 2^{7} $
Index $ 5^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(390625\)\(\medspace = 5^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\langle(1,26,14,16)(2,28,15,20,3,30,11,19,5,29,13,17,4,27,12,18)(6,31,36,21)(7,35,38,24,8,34,40,22,10,32,39,23,9,33,37,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_5^8.D_8.C_8$
Order: \(50000000\)\(\medspace = 2^{7} \cdot 5^{8} \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(15600000000\)\(\medspace = 2^{10} \cdot 3 \cdot 5^{8} \cdot 13 \)
$\operatorname{Aut}(H)$ $C_4^2.C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$C_5^8.D_8.C_8$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$390625$
Möbius function not computed
Projective image not computed