Properties

Label 50000000.fd
Order \( 2^{7} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{10} \cdot 3 \cdot 5^{8} \cdot 13 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3 \cdot 13 \)
Perm deg. $40$
Trans deg. $40$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,22)(2,23,3,24,5,21,4,25)(6,28,7,29,9,26,8,30)(10,27)(11,32)(12,33,13,34,15,31,14,35)(16,39,19,40,20,37,17,36)(18,38), (1,11,4,12,3,15,5,14)(2,13)(6,36,7,40,10,37,9,38)(8,39)(16,27)(17,26,18,30,20,28,19,29)(21,33)(22,32,23,31,25,34,24,35), (1,9,13,39)(2,6,11,36,4,10,12,40,5,7,15,37,3,8,14,38)(16,24,29,32)(17,25,27,35,19,22,28,31,20,23,26,34,18,21,30,33) >;
 
Copy content gap:G := Group( (1,22)(2,23,3,24,5,21,4,25)(6,28,7,29,9,26,8,30)(10,27)(11,32)(12,33,13,34,15,31,14,35)(16,39,19,40,20,37,17,36)(18,38), (1,11,4,12,3,15,5,14)(2,13)(6,36,7,40,10,37,9,38)(8,39)(16,27)(17,26,18,30,20,28,19,29)(21,33)(22,32,23,31,25,34,24,35), (1,9,13,39)(2,6,11,36,4,10,12,40,5,7,15,37,3,8,14,38)(16,24,29,32)(17,25,27,35,19,22,28,31,20,23,26,34,18,21,30,33) );
 
Copy content sage:G = PermutationGroup(['(1,22)(2,23,3,24,5,21,4,25)(6,28,7,29,9,26,8,30)(10,27)(11,32)(12,33,13,34,15,31,14,35)(16,39,19,40,20,37,17,36)(18,38)', '(1,11,4,12,3,15,5,14)(2,13)(6,36,7,40,10,37,9,38)(8,39)(16,27)(17,26,18,30,20,28,19,29)(21,33)(22,32,23,31,25,34,24,35)', '(1,9,13,39)(2,6,11,36,4,10,12,40,5,7,15,37,3,8,14,38)(16,24,29,32)(17,25,27,35,19,22,28,31,20,23,26,34,18,21,30,33)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2833420173063804434598043459804345980434598043459804345952100686455020886892512620230234124673037139645705146257727164754196325477821056718645162720266102377095179547885771810943894058176921896488565124618611745155292306670130515878020167464916700866060388671628176914534277899204754663815715396034904723490472349047234904723437554447231232847903076483745442301016308312712108799978955571776114449116327685885046285431843575932325899196137867561848617612826153444515392003881295926952790910747441977871396682889994858859264211583250749522700286447013559998422149552803900397845852915143006270143469373541375217635953028467301351423,50000000)'); a = G.1; b = G.4; c = G.5; d = G.8; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15;
 

Group information

Description:$C_5^8.D_8.C_8$
Order: \(50000000\)\(\medspace = 2^{7} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(15600000000\)\(\medspace = 2^{10} \cdot 3 \cdot 5^{8} \cdot 13 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20
Elements 1 396875 6252500 390624 12500000 3900000 25000000 1560000 50000000
Conjugacy classes   1 4 9 3120 14 117 28 78 3371
Divisions 1 4 6 3120 6 117 5 39 3298
Autjugacy classes 1 3 8 17 8 2 8 2 49

Minimal presentations

Permutation degree:$40$
Transitive degree:$40$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid c^{8}=d^{5}=e^{5}=f^{5}=g^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, -2, -2, -2, -2, -2, -2, -2, -5, 5, 5, 5, 5, 5, 5, 5, 30, 76, 407797232, 2595007203, 1187942658, 432109593, 109195728, 114001204, 1056447019, 419532334, 13335499, 214, 1865378885, 1082777780, 273537395, 158280170, 260, 3542642886, 1681092021, 1268556276, 447015291, 720092167, 483018262, 11557, 316805812, 30503107, 1042, 1057, 1080051848, 4492823, 64838, 212749253, 280868, 5483, 5498, 3769516809, 295209624, 360039, 165314454, 61350069, 37775484, 30099, 330190090, 1478425, 1980040, 861466375, 521470, 165085, 165100, 4531783691, 3314085146, 10800041, 229538936, 283608071, 35190806, 900101, 6929769612, 2655157467, 58500042, 621619497, 472875072, 31981647, 4875102, 1683978253, 426733468, 315000043, 303660058, 26675113, 26250088, 26250103, 2055110414, 3245428829, 1687500044, 1063407659, 438750074, 239062589, 140625104]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.4, G.5, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "a4", "b", "c", "c2", "c4", "d", "e", "f", "g", "h", "i", "j", "k"]);
 
Copy content gap:G := PcGroupCode(2833420173063804434598043459804345980434598043459804345952100686455020886892512620230234124673037139645705146257727164754196325477821056718645162720266102377095179547885771810943894058176921896488565124618611745155292306670130515878020167464916700866060388671628176914534277899204754663815715396034904723490472349047234904723437554447231232847903076483745442301016308312712108799978955571776114449116327685885046285431843575932325899196137867561848617612826153444515392003881295926952790910747441977871396682889994858859264211583250749522700286447013559998422149552803900397845852915143006270143469373541375217635953028467301351423,50000000); a := G.1; b := G.4; c := G.5; d := G.8; e := G.9; f := G.10; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2833420173063804434598043459804345980434598043459804345952100686455020886892512620230234124673037139645705146257727164754196325477821056718645162720266102377095179547885771810943894058176921896488565124618611745155292306670130515878020167464916700866060388671628176914534277899204754663815715396034904723490472349047234904723437554447231232847903076483745442301016308312712108799978955571776114449116327685885046285431843575932325899196137867561848617612826153444515392003881295926952790910747441977871396682889994858859264211583250749522700286447013559998422149552803900397845852915143006270143469373541375217635953028467301351423,50000000)'); a = G.1; b = G.4; c = G.5; d = G.8; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2833420173063804434598043459804345980434598043459804345952100686455020886892512620230234124673037139645705146257727164754196325477821056718645162720266102377095179547885771810943894058176921896488565124618611745155292306670130515878020167464916700866060388671628176914534277899204754663815715396034904723490472349047234904723437554447231232847903076483745442301016308312712108799978955571776114449116327685885046285431843575932325899196137867561848617612826153444515392003881295926952790910747441977871396682889994858859264211583250749522700286447013559998422149552803900397845852915143006270143469373541375217635953028467301351423,50000000)'); a = G.1; b = G.4; c = G.5; d = G.8; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15;
 
Permutation group:Degree $40$ $\langle(1,22)(2,23,3,24,5,21,4,25)(6,28,7,29,9,26,8,30)(10,27)(11,32)(12,33,13,34,15,31,14,35) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,22)(2,23,3,24,5,21,4,25)(6,28,7,29,9,26,8,30)(10,27)(11,32)(12,33,13,34,15,31,14,35)(16,39,19,40,20,37,17,36)(18,38), (1,11,4,12,3,15,5,14)(2,13)(6,36,7,40,10,37,9,38)(8,39)(16,27)(17,26,18,30,20,28,19,29)(21,33)(22,32,23,31,25,34,24,35), (1,9,13,39)(2,6,11,36,4,10,12,40,5,7,15,37,3,8,14,38)(16,24,29,32)(17,25,27,35,19,22,28,31,20,23,26,34,18,21,30,33) >;
 
Copy content gap:G := Group( (1,22)(2,23,3,24,5,21,4,25)(6,28,7,29,9,26,8,30)(10,27)(11,32)(12,33,13,34,15,31,14,35)(16,39,19,40,20,37,17,36)(18,38), (1,11,4,12,3,15,5,14)(2,13)(6,36,7,40,10,37,9,38)(8,39)(16,27)(17,26,18,30,20,28,19,29)(21,33)(22,32,23,31,25,34,24,35), (1,9,13,39)(2,6,11,36,4,10,12,40,5,7,15,37,3,8,14,38)(16,24,29,32)(17,25,27,35,19,22,28,31,20,23,26,34,18,21,30,33) );
 
Copy content sage:G = PermutationGroup(['(1,22)(2,23,3,24,5,21,4,25)(6,28,7,29,9,26,8,30)(10,27)(11,32)(12,33,13,34,15,31,14,35)(16,39,19,40,20,37,17,36)(18,38)', '(1,11,4,12,3,15,5,14)(2,13)(6,36,7,40,10,37,9,38)(8,39)(16,27)(17,26,18,30,20,28,19,29)(21,33)(22,32,23,31,25,34,24,35)', '(1,9,13,39)(2,6,11,36,4,10,12,40,5,7,15,37,3,8,14,38)(16,24,29,32)(17,25,27,35,19,22,28,31,20,23,26,34,18,21,30,33)'])
 
Transitive group: 40T185333 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.D_8)$ . $C_8$ $(C_5^8.Q_{16})$ . $C_8$ $(C_5^8.C_{16})$ . $D_4$ (2) $(C_5^8.\SD_{16})$ . $C_8$ (2) all 24

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{8} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 47 normal subgroups (27 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_{16}.D_4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3371 \times 3371$ character table is not available for this group.

Rational character table

The $3298 \times 3298$ rational character table is not available for this group.