Properties

Label 49408.1118922.1544.a1.a1
Order $ 2^{5} $
Index $ 2^{3} \cdot 193 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(1544\)\(\medspace = 2^{3} \cdot 193 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a^{8}, b^{193}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{1544}.C_{32}$
Order: \(49408\)\(\medspace = 2^{8} \cdot 193 \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{772}.C_{96}.C_2^4$
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4\times C_{64}$
Normalizer:$C_4\times C_{64}$
Normal closure:$C_{1544}:C_4$
Core:$C_8$
Minimal over-subgroups:$C_{1544}:C_4$$C_4\times C_{16}$
Maximal under-subgroups:$C_4^2$$C_2\times C_8$$C_2\times C_8$

Other information

Number of subgroups in this conjugacy class$193$
Möbius function$0$
Projective image$C_{193}:C_{32}$