Properties

Label 49152.t.16.M
Order $ 2^{10} \cdot 3 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 3 & 29 \\ 4 & 29 \end{array}\right), \left(\begin{array}{rr} 24 & 11 \\ 21 & 7 \end{array}\right), \left(\begin{array}{rr} 7 & 16 \\ 16 & 23 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 27 & 30 \\ 2 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 8 \\ 24 & 11 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 25 & 16 \\ 16 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 29 & 0 \\ 0 & 29 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $(C_4^3\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(49152\)\(\medspace = 2^{14} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:(C_2\times Q_8).Q_8$, of order \(6291456\)\(\medspace = 2^{21} \cdot 3 \)
$\operatorname{Aut}(H)$ $(C_4\times A_4).C_2^5.C_2^6$
$W$$C_8:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Normal closure:$(C_4^3\times C_8).\GL(2,\mathbb{Z}/4)$
Core:$C_2^3\times C_4\times C_8$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed