Properties

Label 486.216.6.b1
Order $ 3^{4} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_3^2$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $a, d^{2}, c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_3\times C_{18}):C_3^2$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5:S_3^2$, of order \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_3^4:S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3^3$, of order \(27\)\(\medspace = 3^{3} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$(C_3\times C_{18}):C_3^2$
Complements:$C_6$
Minimal over-subgroups:$C_3^2.C_3^3$$C_{18}:C_3^2$
Maximal under-subgroups:$C_3^3$$C_3\times C_9$$C_9:C_3$$C_9:C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_6\times \He_3$