Properties

Label 486.216.1.a1
Order $ 2 \cdot 3^{5} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3\times C_{18}):C_3^2$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: $1$
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $d^{9}, d^{6}, c, a, b, d^{2}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, a direct factor, nonabelian, a Hall subgroup, elementary for $p = 3$ (hence hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_3\times C_{18}):C_3^2$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5:S_3^2$, of order \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_3^5:S_3^2$, of order \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
$W$$C_3\times \He_3$, of order \(81\)\(\medspace = 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$(C_3\times C_{18}):C_3^2$
Complements:$C_1$
Maximal under-subgroups:$C_3^2.C_3^3$$C_6\times \He_3$$C_{18}:C_3^2$$C_{18}:C_3^2$$C_6.\He_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3\times \He_3$