Properties

Label 486.196.27.a1
Order $ 2 \cdot 3^{2} $
Index $ 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 2 & 0 & 1 & 2 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^4:C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $\He_3$
Order: \(27\)\(\medspace = 3^{3} \)
Exponent: \(3\)
Automorphism Group: $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.(S_3\times C_3^2:\GL(2,3))$, of order \(629856\)\(\medspace = 2^{5} \cdot 3^{9} \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4374\)\(\medspace = 2 \cdot 3^{7} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3^3\times C_6$
Normalizer:$C_3^4:C_6$
Complements:$\He_3$
Minimal over-subgroups:$C_3^2\times C_6$$C_2\times \He_3$$C_3^2\times C_6$
Maximal under-subgroups:$C_3^2$$C_6$$C_6$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image$C_3\times \He_3$