Properties

Label 629856.le
Order \( 2^{5} \cdot 3^{9} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{5} \cdot 3^{9} \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $81$
Trans deg. $81$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 81 | (1,2,3)(4,12,8)(5,9,7)(6,13,11)(10,20,27)(14,32,18)(17,31,39)(19,26,33)(21,28,25)(22,34,40)(23,41,35)(24,57,53)(36,44,56)(50,70,51)(58,59,60)(61,72,62)(63,81,76)(69,80,77), (1,3,2)(4,8,12)(5,7,9)(6,13,11)(10,27,20)(14,18,32)(16,30,38)(19,33,26)(21,28,25)(22,34,40)(23,41,35)(43,55,71)(46,67,48)(49,68,65)(58,59,60)(61,72,62)(66,74,79)(73,78,75), (1,2,3)(4,8,12)(5,9,7)(6,13,11)(10,20,27)(14,18,32)(15,45,52)(16,30,38)(17,39,31)(19,33,26)(21,28,25)(22,40,34)(23,41,35)(24,53,57)(29,42,64)(36,56,44)(37,54,47)(43,55,71)(46,48,67)(49,68,65)(50,70,51)(58,60,59)(61,62,72)(63,81,76)(66,79,74)(69,80,77)(73,75,78), (1,4)(2,8)(3,12)(5,19)(6,22)(7,26)(9,33)(10,32)(11,34)(13,40)(14,20)(16,48)(17,51)(18,27)(21,58)(23,62)(24,63)(25,59)(28,60)(30,67)(31,70)(35,61)(36,69)(38,46)(39,50)(41,72)(43,75)(44,77)(49,79)(53,81)(55,78)(56,80)(57,76)(65,66)(68,74)(71,73), (1,5,20)(2,9,27)(3,7,10)(4,14,19)(6,23,25)(8,18,33)(11,35,28)(12,32,26)(13,41,21)(16,49,43)(22,59,62)(30,68,55)(34,60,61)(38,65,71)(40,58,72)(46,73,66)(48,75,79)(67,78,74), (2,10)(3,9)(4,15)(6,24)(7,27)(8,29)(11,36)(12,37)(13,39)(14,42)(16,50)(17,28)(18,54)(19,47)(21,57)(22,60)(23,31)(25,44)(26,64)(30,69)(32,45)(33,52)(34,62)(35,53)(38,63)(41,56)(43,76)(46,78)(49,80)(51,55)(59,61)(65,70)(66,67)(68,81)(71,77)(73,74), (4,16)(5,20)(7,10)(8,30)(9,27)(12,38)(14,43)(15,39)(17,52)(18,55)(19,49)(21,41)(22,46)(23,25)(24,64)(26,65)(28,35)(29,53)(31,45)(32,71)(33,68)(34,67)(36,54)(37,44)(40,48)(42,57)(47,56)(58,79)(59,66)(60,74)(61,78)(62,73)(63,77)(69,81)(72,75)(76,80), (1,6)(2,11)(3,13)(4,17)(5,21)(7,28)(8,31)(9,25)(10,23)(12,39)(14,44)(15,46)(16,38)(18,56)(19,57)(20,35)(22,40)(24,26)(27,41)(29,66)(32,36)(33,53)(37,73)(42,74)(45,67)(47,75)(48,52)(49,68)(50,51)(54,78)(55,71)(59,60)(61,72)(63,81)(64,79)(77,80), (1,7,27)(2,5,10)(3,9,20)(4,18,26)(6,21,35)(8,32,19)(11,25,41)(12,14,33)(13,28,23)(16,30,38)(17,36,53)(22,61,58)(24,31,44)(34,72,59)(39,56,57)(40,62,60)(43,55,71)(46,67,48)(49,68,65)(50,76,80)(51,81,69)(63,77,70)(66,74,79)(73,78,75), (1,5,20)(2,9,27)(3,7,10)(4,19,14)(6,25,23)(8,33,18)(11,28,35)(12,26,32)(13,21,41)(15,47,42)(16,43,49)(17,53,36)(22,59,62)(24,44,31)(29,52,54)(30,55,68)(34,60,61)(37,64,45)(38,71,65)(39,57,56)(40,58,72)(46,73,66)(48,75,79)(50,76,80)(51,81,69)(63,77,70)(67,78,74) >;
 
Copy content gap:G := Group( (1,2,3)(4,12,8)(5,9,7)(6,13,11)(10,20,27)(14,32,18)(17,31,39)(19,26,33)(21,28,25)(22,34,40)(23,41,35)(24,57,53)(36,44,56)(50,70,51)(58,59,60)(61,72,62)(63,81,76)(69,80,77), (1,3,2)(4,8,12)(5,7,9)(6,13,11)(10,27,20)(14,18,32)(16,30,38)(19,33,26)(21,28,25)(22,34,40)(23,41,35)(43,55,71)(46,67,48)(49,68,65)(58,59,60)(61,72,62)(66,74,79)(73,78,75), (1,2,3)(4,8,12)(5,9,7)(6,13,11)(10,20,27)(14,18,32)(15,45,52)(16,30,38)(17,39,31)(19,33,26)(21,28,25)(22,40,34)(23,41,35)(24,53,57)(29,42,64)(36,56,44)(37,54,47)(43,55,71)(46,48,67)(49,68,65)(50,70,51)(58,60,59)(61,62,72)(63,81,76)(66,79,74)(69,80,77)(73,75,78), (1,4)(2,8)(3,12)(5,19)(6,22)(7,26)(9,33)(10,32)(11,34)(13,40)(14,20)(16,48)(17,51)(18,27)(21,58)(23,62)(24,63)(25,59)(28,60)(30,67)(31,70)(35,61)(36,69)(38,46)(39,50)(41,72)(43,75)(44,77)(49,79)(53,81)(55,78)(56,80)(57,76)(65,66)(68,74)(71,73), (1,5,20)(2,9,27)(3,7,10)(4,14,19)(6,23,25)(8,18,33)(11,35,28)(12,32,26)(13,41,21)(16,49,43)(22,59,62)(30,68,55)(34,60,61)(38,65,71)(40,58,72)(46,73,66)(48,75,79)(67,78,74), (2,10)(3,9)(4,15)(6,24)(7,27)(8,29)(11,36)(12,37)(13,39)(14,42)(16,50)(17,28)(18,54)(19,47)(21,57)(22,60)(23,31)(25,44)(26,64)(30,69)(32,45)(33,52)(34,62)(35,53)(38,63)(41,56)(43,76)(46,78)(49,80)(51,55)(59,61)(65,70)(66,67)(68,81)(71,77)(73,74), (4,16)(5,20)(7,10)(8,30)(9,27)(12,38)(14,43)(15,39)(17,52)(18,55)(19,49)(21,41)(22,46)(23,25)(24,64)(26,65)(28,35)(29,53)(31,45)(32,71)(33,68)(34,67)(36,54)(37,44)(40,48)(42,57)(47,56)(58,79)(59,66)(60,74)(61,78)(62,73)(63,77)(69,81)(72,75)(76,80), (1,6)(2,11)(3,13)(4,17)(5,21)(7,28)(8,31)(9,25)(10,23)(12,39)(14,44)(15,46)(16,38)(18,56)(19,57)(20,35)(22,40)(24,26)(27,41)(29,66)(32,36)(33,53)(37,73)(42,74)(45,67)(47,75)(48,52)(49,68)(50,51)(54,78)(55,71)(59,60)(61,72)(63,81)(64,79)(77,80), (1,7,27)(2,5,10)(3,9,20)(4,18,26)(6,21,35)(8,32,19)(11,25,41)(12,14,33)(13,28,23)(16,30,38)(17,36,53)(22,61,58)(24,31,44)(34,72,59)(39,56,57)(40,62,60)(43,55,71)(46,67,48)(49,68,65)(50,76,80)(51,81,69)(63,77,70)(66,74,79)(73,78,75), (1,5,20)(2,9,27)(3,7,10)(4,19,14)(6,25,23)(8,33,18)(11,28,35)(12,26,32)(13,21,41)(15,47,42)(16,43,49)(17,53,36)(22,59,62)(24,44,31)(29,52,54)(30,55,68)(34,60,61)(37,64,45)(38,71,65)(39,57,56)(40,58,72)(46,73,66)(48,75,79)(50,76,80)(51,81,69)(63,77,70)(67,78,74) );
 
Copy content sage:G = PermutationGroup(['(1,2,3)(4,12,8)(5,9,7)(6,13,11)(10,20,27)(14,32,18)(17,31,39)(19,26,33)(21,28,25)(22,34,40)(23,41,35)(24,57,53)(36,44,56)(50,70,51)(58,59,60)(61,72,62)(63,81,76)(69,80,77)', '(1,3,2)(4,8,12)(5,7,9)(6,13,11)(10,27,20)(14,18,32)(16,30,38)(19,33,26)(21,28,25)(22,34,40)(23,41,35)(43,55,71)(46,67,48)(49,68,65)(58,59,60)(61,72,62)(66,74,79)(73,78,75)', '(1,2,3)(4,8,12)(5,9,7)(6,13,11)(10,20,27)(14,18,32)(15,45,52)(16,30,38)(17,39,31)(19,33,26)(21,28,25)(22,40,34)(23,41,35)(24,53,57)(29,42,64)(36,56,44)(37,54,47)(43,55,71)(46,48,67)(49,68,65)(50,70,51)(58,60,59)(61,62,72)(63,81,76)(66,79,74)(69,80,77)(73,75,78)', '(1,4)(2,8)(3,12)(5,19)(6,22)(7,26)(9,33)(10,32)(11,34)(13,40)(14,20)(16,48)(17,51)(18,27)(21,58)(23,62)(24,63)(25,59)(28,60)(30,67)(31,70)(35,61)(36,69)(38,46)(39,50)(41,72)(43,75)(44,77)(49,79)(53,81)(55,78)(56,80)(57,76)(65,66)(68,74)(71,73)', '(1,5,20)(2,9,27)(3,7,10)(4,14,19)(6,23,25)(8,18,33)(11,35,28)(12,32,26)(13,41,21)(16,49,43)(22,59,62)(30,68,55)(34,60,61)(38,65,71)(40,58,72)(46,73,66)(48,75,79)(67,78,74)', '(2,10)(3,9)(4,15)(6,24)(7,27)(8,29)(11,36)(12,37)(13,39)(14,42)(16,50)(17,28)(18,54)(19,47)(21,57)(22,60)(23,31)(25,44)(26,64)(30,69)(32,45)(33,52)(34,62)(35,53)(38,63)(41,56)(43,76)(46,78)(49,80)(51,55)(59,61)(65,70)(66,67)(68,81)(71,77)(73,74)', '(4,16)(5,20)(7,10)(8,30)(9,27)(12,38)(14,43)(15,39)(17,52)(18,55)(19,49)(21,41)(22,46)(23,25)(24,64)(26,65)(28,35)(29,53)(31,45)(32,71)(33,68)(34,67)(36,54)(37,44)(40,48)(42,57)(47,56)(58,79)(59,66)(60,74)(61,78)(62,73)(63,77)(69,81)(72,75)(76,80)', '(1,6)(2,11)(3,13)(4,17)(5,21)(7,28)(8,31)(9,25)(10,23)(12,39)(14,44)(15,46)(16,38)(18,56)(19,57)(20,35)(22,40)(24,26)(27,41)(29,66)(32,36)(33,53)(37,73)(42,74)(45,67)(47,75)(48,52)(49,68)(50,51)(54,78)(55,71)(59,60)(61,72)(63,81)(64,79)(77,80)', '(1,7,27)(2,5,10)(3,9,20)(4,18,26)(6,21,35)(8,32,19)(11,25,41)(12,14,33)(13,28,23)(16,30,38)(17,36,53)(22,61,58)(24,31,44)(34,72,59)(39,56,57)(40,62,60)(43,55,71)(46,67,48)(49,68,65)(50,76,80)(51,81,69)(63,77,70)(66,74,79)(73,78,75)', '(1,5,20)(2,9,27)(3,7,10)(4,19,14)(6,25,23)(8,33,18)(11,28,35)(12,26,32)(13,21,41)(15,47,42)(16,43,49)(17,53,36)(22,59,62)(24,44,31)(29,52,54)(30,55,68)(34,60,61)(37,64,45)(38,71,65)(39,57,56)(40,58,72)(46,73,66)(48,75,79)(50,76,80)(51,81,69)(63,77,70)(67,78,74)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(18683809453093153657370310695432529012539119004457734464046687225721439787080334941598528390828603934431128595514020831543961451448585944881476200698889298182882045082897398908396088790141227550073059407874665468761577403504625270325121977143892444506697683675276265076672524449124764972088835350763499935975637213098892462544273183282335691124883914955765290955278469120987653471936018775367833560767571392283887438463,629856)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14;
 

Group information

Description:$C_3^5.(S_3\times C_3^2:\GL(2,3))$
Order: \(629856\)\(\medspace = 2^{5} \cdot 3^{9} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^5.(S_3\times C_3^2:\GL(2,3))$, of order \(629856\)\(\medspace = 2^{5} \cdot 3^{9} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 5, $C_3$ x 9
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 3483 16280 8748 296136 87480 42768 69984 34992 69984 629856
Conjugacy classes   1 5 28 2 37 4 7 6 3 8 101
Divisions 1 5 28 2 37 2 5 5 2 3 90
Autjugacy classes 1 5 28 2 37 4 7 6 3 8 101

Minimal presentations

Permutation degree:$81$
Transitive degree:$81$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 72 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid a^{2}=b^{6}=d^{12}=e^{3}=f^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 15797657, 71, 14842130, 13685283, 1745537, 223471, 157, 22379284, 2194098, 958052, 1320, 40458101, 2293723, 1317741, 441047, 190825, 243, 18416166, 1926308, 582154, 5928, 286, 65318407, 3048213, 1306403, 5425, 9035720, 9199030, 17799300, 3011954, 2581048, 497526, 430256, 214810, 78986889, 24554903, 7560037, 6582291, 2479745, 142879, 73173, 35387, 70697098, 3614712, 2117846, 399220, 33344, 38930, 4756, 82349579, 24217, 2286183, 653237, 108945, 59091, 15257, 6368598, 1061492, 1415314, 177000, 82301197, 34292187, 13716905, 1143127, 3429285, 952643, 571633]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.2, G.4, G.6, G.9, G.10, G.11, G.12, G.13, G.14]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "d4", "e", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(18683809453093153657370310695432529012539119004457734464046687225721439787080334941598528390828603934431128595514020831543961451448585944881476200698889298182882045082897398908396088790141227550073059407874665468761577403504625270325121977143892444506697683675276265076672524449124764972088835350763499935975637213098892462544273183282335691124883914955765290955278469120987653471936018775367833560767571392283887438463,629856); a := G.1; b := G.2; c := G.4; d := G.6; e := G.9; f := G.10; g := G.11; h := G.12; i := G.13; j := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(18683809453093153657370310695432529012539119004457734464046687225721439787080334941598528390828603934431128595514020831543961451448585944881476200698889298182882045082897398908396088790141227550073059407874665468761577403504625270325121977143892444506697683675276265076672524449124764972088835350763499935975637213098892462544273183282335691124883914955765290955278469120987653471936018775367833560767571392283887438463,629856)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(18683809453093153657370310695432529012539119004457734464046687225721439787080334941598528390828603934431128595514020831543961451448585944881476200698889298182882045082897398908396088790141227550073059407874665468761577403504625270325121977143892444506697683675276265076672524449124764972088835350763499935975637213098892462544273183282335691124883914955765290955278469120987653471936018775367833560767571392283887438463,629856)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14;
 
Permutation group:Degree $81$ $\langle(1,2,3)(4,12,8)(5,9,7)(6,13,11)(10,20,27)(14,32,18)(17,31,39)(19,26,33) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 81 | (1,2,3)(4,12,8)(5,9,7)(6,13,11)(10,20,27)(14,32,18)(17,31,39)(19,26,33)(21,28,25)(22,34,40)(23,41,35)(24,57,53)(36,44,56)(50,70,51)(58,59,60)(61,72,62)(63,81,76)(69,80,77), (1,3,2)(4,8,12)(5,7,9)(6,13,11)(10,27,20)(14,18,32)(16,30,38)(19,33,26)(21,28,25)(22,34,40)(23,41,35)(43,55,71)(46,67,48)(49,68,65)(58,59,60)(61,72,62)(66,74,79)(73,78,75), (1,2,3)(4,8,12)(5,9,7)(6,13,11)(10,20,27)(14,18,32)(15,45,52)(16,30,38)(17,39,31)(19,33,26)(21,28,25)(22,40,34)(23,41,35)(24,53,57)(29,42,64)(36,56,44)(37,54,47)(43,55,71)(46,48,67)(49,68,65)(50,70,51)(58,60,59)(61,62,72)(63,81,76)(66,79,74)(69,80,77)(73,75,78), (1,4)(2,8)(3,12)(5,19)(6,22)(7,26)(9,33)(10,32)(11,34)(13,40)(14,20)(16,48)(17,51)(18,27)(21,58)(23,62)(24,63)(25,59)(28,60)(30,67)(31,70)(35,61)(36,69)(38,46)(39,50)(41,72)(43,75)(44,77)(49,79)(53,81)(55,78)(56,80)(57,76)(65,66)(68,74)(71,73), (1,5,20)(2,9,27)(3,7,10)(4,14,19)(6,23,25)(8,18,33)(11,35,28)(12,32,26)(13,41,21)(16,49,43)(22,59,62)(30,68,55)(34,60,61)(38,65,71)(40,58,72)(46,73,66)(48,75,79)(67,78,74), (2,10)(3,9)(4,15)(6,24)(7,27)(8,29)(11,36)(12,37)(13,39)(14,42)(16,50)(17,28)(18,54)(19,47)(21,57)(22,60)(23,31)(25,44)(26,64)(30,69)(32,45)(33,52)(34,62)(35,53)(38,63)(41,56)(43,76)(46,78)(49,80)(51,55)(59,61)(65,70)(66,67)(68,81)(71,77)(73,74), (4,16)(5,20)(7,10)(8,30)(9,27)(12,38)(14,43)(15,39)(17,52)(18,55)(19,49)(21,41)(22,46)(23,25)(24,64)(26,65)(28,35)(29,53)(31,45)(32,71)(33,68)(34,67)(36,54)(37,44)(40,48)(42,57)(47,56)(58,79)(59,66)(60,74)(61,78)(62,73)(63,77)(69,81)(72,75)(76,80), (1,6)(2,11)(3,13)(4,17)(5,21)(7,28)(8,31)(9,25)(10,23)(12,39)(14,44)(15,46)(16,38)(18,56)(19,57)(20,35)(22,40)(24,26)(27,41)(29,66)(32,36)(33,53)(37,73)(42,74)(45,67)(47,75)(48,52)(49,68)(50,51)(54,78)(55,71)(59,60)(61,72)(63,81)(64,79)(77,80), (1,7,27)(2,5,10)(3,9,20)(4,18,26)(6,21,35)(8,32,19)(11,25,41)(12,14,33)(13,28,23)(16,30,38)(17,36,53)(22,61,58)(24,31,44)(34,72,59)(39,56,57)(40,62,60)(43,55,71)(46,67,48)(49,68,65)(50,76,80)(51,81,69)(63,77,70)(66,74,79)(73,78,75), (1,5,20)(2,9,27)(3,7,10)(4,19,14)(6,25,23)(8,33,18)(11,28,35)(12,26,32)(13,21,41)(15,47,42)(16,43,49)(17,53,36)(22,59,62)(24,44,31)(29,52,54)(30,55,68)(34,60,61)(37,64,45)(38,71,65)(39,57,56)(40,58,72)(46,73,66)(48,75,79)(50,76,80)(51,81,69)(63,77,70)(67,78,74) >;
 
Copy content gap:G := Group( (1,2,3)(4,12,8)(5,9,7)(6,13,11)(10,20,27)(14,32,18)(17,31,39)(19,26,33)(21,28,25)(22,34,40)(23,41,35)(24,57,53)(36,44,56)(50,70,51)(58,59,60)(61,72,62)(63,81,76)(69,80,77), (1,3,2)(4,8,12)(5,7,9)(6,13,11)(10,27,20)(14,18,32)(16,30,38)(19,33,26)(21,28,25)(22,34,40)(23,41,35)(43,55,71)(46,67,48)(49,68,65)(58,59,60)(61,72,62)(66,74,79)(73,78,75), (1,2,3)(4,8,12)(5,9,7)(6,13,11)(10,20,27)(14,18,32)(15,45,52)(16,30,38)(17,39,31)(19,33,26)(21,28,25)(22,40,34)(23,41,35)(24,53,57)(29,42,64)(36,56,44)(37,54,47)(43,55,71)(46,48,67)(49,68,65)(50,70,51)(58,60,59)(61,62,72)(63,81,76)(66,79,74)(69,80,77)(73,75,78), (1,4)(2,8)(3,12)(5,19)(6,22)(7,26)(9,33)(10,32)(11,34)(13,40)(14,20)(16,48)(17,51)(18,27)(21,58)(23,62)(24,63)(25,59)(28,60)(30,67)(31,70)(35,61)(36,69)(38,46)(39,50)(41,72)(43,75)(44,77)(49,79)(53,81)(55,78)(56,80)(57,76)(65,66)(68,74)(71,73), (1,5,20)(2,9,27)(3,7,10)(4,14,19)(6,23,25)(8,18,33)(11,35,28)(12,32,26)(13,41,21)(16,49,43)(22,59,62)(30,68,55)(34,60,61)(38,65,71)(40,58,72)(46,73,66)(48,75,79)(67,78,74), (2,10)(3,9)(4,15)(6,24)(7,27)(8,29)(11,36)(12,37)(13,39)(14,42)(16,50)(17,28)(18,54)(19,47)(21,57)(22,60)(23,31)(25,44)(26,64)(30,69)(32,45)(33,52)(34,62)(35,53)(38,63)(41,56)(43,76)(46,78)(49,80)(51,55)(59,61)(65,70)(66,67)(68,81)(71,77)(73,74), (4,16)(5,20)(7,10)(8,30)(9,27)(12,38)(14,43)(15,39)(17,52)(18,55)(19,49)(21,41)(22,46)(23,25)(24,64)(26,65)(28,35)(29,53)(31,45)(32,71)(33,68)(34,67)(36,54)(37,44)(40,48)(42,57)(47,56)(58,79)(59,66)(60,74)(61,78)(62,73)(63,77)(69,81)(72,75)(76,80), (1,6)(2,11)(3,13)(4,17)(5,21)(7,28)(8,31)(9,25)(10,23)(12,39)(14,44)(15,46)(16,38)(18,56)(19,57)(20,35)(22,40)(24,26)(27,41)(29,66)(32,36)(33,53)(37,73)(42,74)(45,67)(47,75)(48,52)(49,68)(50,51)(54,78)(55,71)(59,60)(61,72)(63,81)(64,79)(77,80), (1,7,27)(2,5,10)(3,9,20)(4,18,26)(6,21,35)(8,32,19)(11,25,41)(12,14,33)(13,28,23)(16,30,38)(17,36,53)(22,61,58)(24,31,44)(34,72,59)(39,56,57)(40,62,60)(43,55,71)(46,67,48)(49,68,65)(50,76,80)(51,81,69)(63,77,70)(66,74,79)(73,78,75), (1,5,20)(2,9,27)(3,7,10)(4,19,14)(6,25,23)(8,33,18)(11,28,35)(12,26,32)(13,21,41)(15,47,42)(16,43,49)(17,53,36)(22,59,62)(24,44,31)(29,52,54)(30,55,68)(34,60,61)(37,64,45)(38,71,65)(39,57,56)(40,58,72)(46,73,66)(48,75,79)(50,76,80)(51,81,69)(63,77,70)(67,78,74) );
 
Copy content sage:G = PermutationGroup(['(1,2,3)(4,12,8)(5,9,7)(6,13,11)(10,20,27)(14,32,18)(17,31,39)(19,26,33)(21,28,25)(22,34,40)(23,41,35)(24,57,53)(36,44,56)(50,70,51)(58,59,60)(61,72,62)(63,81,76)(69,80,77)', '(1,3,2)(4,8,12)(5,7,9)(6,13,11)(10,27,20)(14,18,32)(16,30,38)(19,33,26)(21,28,25)(22,34,40)(23,41,35)(43,55,71)(46,67,48)(49,68,65)(58,59,60)(61,72,62)(66,74,79)(73,78,75)', '(1,2,3)(4,8,12)(5,9,7)(6,13,11)(10,20,27)(14,18,32)(15,45,52)(16,30,38)(17,39,31)(19,33,26)(21,28,25)(22,40,34)(23,41,35)(24,53,57)(29,42,64)(36,56,44)(37,54,47)(43,55,71)(46,48,67)(49,68,65)(50,70,51)(58,60,59)(61,62,72)(63,81,76)(66,79,74)(69,80,77)(73,75,78)', '(1,4)(2,8)(3,12)(5,19)(6,22)(7,26)(9,33)(10,32)(11,34)(13,40)(14,20)(16,48)(17,51)(18,27)(21,58)(23,62)(24,63)(25,59)(28,60)(30,67)(31,70)(35,61)(36,69)(38,46)(39,50)(41,72)(43,75)(44,77)(49,79)(53,81)(55,78)(56,80)(57,76)(65,66)(68,74)(71,73)', '(1,5,20)(2,9,27)(3,7,10)(4,14,19)(6,23,25)(8,18,33)(11,35,28)(12,32,26)(13,41,21)(16,49,43)(22,59,62)(30,68,55)(34,60,61)(38,65,71)(40,58,72)(46,73,66)(48,75,79)(67,78,74)', '(2,10)(3,9)(4,15)(6,24)(7,27)(8,29)(11,36)(12,37)(13,39)(14,42)(16,50)(17,28)(18,54)(19,47)(21,57)(22,60)(23,31)(25,44)(26,64)(30,69)(32,45)(33,52)(34,62)(35,53)(38,63)(41,56)(43,76)(46,78)(49,80)(51,55)(59,61)(65,70)(66,67)(68,81)(71,77)(73,74)', '(4,16)(5,20)(7,10)(8,30)(9,27)(12,38)(14,43)(15,39)(17,52)(18,55)(19,49)(21,41)(22,46)(23,25)(24,64)(26,65)(28,35)(29,53)(31,45)(32,71)(33,68)(34,67)(36,54)(37,44)(40,48)(42,57)(47,56)(58,79)(59,66)(60,74)(61,78)(62,73)(63,77)(69,81)(72,75)(76,80)', '(1,6)(2,11)(3,13)(4,17)(5,21)(7,28)(8,31)(9,25)(10,23)(12,39)(14,44)(15,46)(16,38)(18,56)(19,57)(20,35)(22,40)(24,26)(27,41)(29,66)(32,36)(33,53)(37,73)(42,74)(45,67)(47,75)(48,52)(49,68)(50,51)(54,78)(55,71)(59,60)(61,72)(63,81)(64,79)(77,80)', '(1,7,27)(2,5,10)(3,9,20)(4,18,26)(6,21,35)(8,32,19)(11,25,41)(12,14,33)(13,28,23)(16,30,38)(17,36,53)(22,61,58)(24,31,44)(34,72,59)(39,56,57)(40,62,60)(43,55,71)(46,67,48)(49,68,65)(50,76,80)(51,81,69)(63,77,70)(66,74,79)(73,78,75)', '(1,5,20)(2,9,27)(3,7,10)(4,19,14)(6,25,23)(8,33,18)(11,28,35)(12,26,32)(13,21,41)(15,47,42)(16,43,49)(17,53,36)(22,59,62)(24,44,31)(29,52,54)(30,55,68)(34,60,61)(37,64,45)(38,71,65)(39,57,56)(40,58,72)(46,73,66)(48,75,79)(50,76,80)(51,81,69)(63,77,70)(67,78,74)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^3.C_3^4.D_6)$ . $S_4$ $(C_3^5.C_3:S_3.S_4)$ . $S_3$ (2) $(C_3^4:C_6)$ . $(S_3\wr S_3)$ $(C_3^5.C_3:S_3.A_4)$ . $D_6$ (2) all 20
Aut. group: $\Aut(C_3^4:C_3)$ $\Aut(C_3^4:C_6)$ $\Aut(C_3^4:C_6)$ $\Aut((C_3^2\times \He_3):S_3)$

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 27 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4.C_3^4.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $101 \times 101$ character table is not available for this group.

Rational character table

The $90 \times 90$ rational character table is not available for this group.