Subgroup ($H$) information
| Description: | $C_{11}^2:C_5$ |
| Order: | \(605\)\(\medspace = 5 \cdot 11^{2} \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(55\)\(\medspace = 5 \cdot 11 \) |
| Generators: |
$a^{2}b^{22}, c, b^{4}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{11}^2:(C_5\times Q_8)$ |
| Order: | \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $Q_8$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_{11}^2:D_4$, of order \(96800\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 11^{2} \) |
| $\operatorname{Aut}(H)$ | $C_{11}^2.\GL(2,11)$, of order \(1597200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $D_{11}:F_{11}$, of order \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $C_{11}^2:(C_5\times Q_8)$ |