Properties

Label 4840.bc.4.a1.a1
Order $ 2 \cdot 5 \cdot 11^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_{10}$
Order: \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $b^{22}, b^{4}, c, a^{2}b^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:(C_5\times Q_8)$
Order: \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{11}^2:D_4$, of order \(96800\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 11^{2} \)
$\operatorname{Aut}(H)$ $C_{11}^2.\GL(2,11)$, of order \(1597200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{11}:F_{11}$, of order \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{11}^2:(C_5\times Q_8)$
Minimal over-subgroups:$C_{11}^2:C_{20}$$C_{11}^2:C_{20}$$C_{11}^2:C_{20}$
Maximal under-subgroups:$C_{11}^2:C_5$$C_{11}\times C_{22}$$C_{11}:C_{10}$$C_{11}:C_{10}$$C_{11}:C_{10}$$C_{11}:C_{10}$$C_{11}:C_{10}$$C_{11}:C_{10}$$C_{11}:C_{10}$

Other information

Möbius function$2$
Projective image$D_{11}:F_{11}$