Properties

Label 4826640.c.2380.a1.a1
Order $ 2^{2} \cdot 3 \cdot 13^{2} $
Index $ 2^{2} \cdot 5 \cdot 7 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{13}:F_{13}$
Order: \(2028\)\(\medspace = 2^{2} \cdot 3 \cdot 13^{2} \)
Index: \(2380\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Generators: $\left[ \left(\begin{array}{rr} 124 & 161 \\ 139 & 51 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 136 & 13 \\ 110 & 67 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 125 & 22 \\ 119 & 127 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 120 & 147 \\ 76 & 62 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 140 & 43 \\ 21 & 8 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\PGL(2,169)$
Order: \(4826640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
Exponent: \(185640\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,169).C_2^2$, of order \(9653280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
$\operatorname{Aut}(H)$ $C_{13}^2.\GL(2,13)$, of order \(4429152\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \cdot 13^{3} \)
$W$$F_{169}$, of order \(28392\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 13^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_{169}$
Normal closure:$\PSL(2,169)$
Core:$C_1$
Minimal over-subgroups:$C_{13}^2:C_{84}$$C_{13}^2:C_{24}$
Maximal under-subgroups:$C_{13}^2:C_6$$C_{13}^2:C_4$$F_{13}$

Other information

Number of subgroups in this conjugacy class$170$
Möbius function$0$
Projective image$\PGL(2,169)$