Properties

Label 48000000.bs.384.A
Order $ 2^{3} \cdot 5^{6} $
Index $ 2^{7} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(125000\)\(\medspace = 2^{3} \cdot 5^{6} \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: not computed
Generators: $\langle(1,3,5,2,4)(6,7,8,9,10)(11,15,14,13,12)(16,19,17,20,18), (11,15,14,13,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_5^6:((C_2\times C_4^3).S_4)$
Order: \(48000000\)\(\medspace = 2^{10} \cdot 3 \cdot 5^{6} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^4.S_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Outer Automorphisms: $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^6.C_2^3.C_2^4.C_6.C_4.C_2^2$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(48000000\)\(\medspace = 2^{10} \cdot 3 \cdot 5^{6} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^6:((C_2\times C_4^3).S_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed