Properties

Label 48000000.bs
Order \( 2^{10} \cdot 3 \cdot 5^{6} \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{12} \cdot 3 \cdot 5^{6} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $30$
Trans deg. $30$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,27,19)(2,30,20,3,28,16,5,29,18,4,26,17)(6,23,12,7,24,13,10,22,11,9,21,15)(8,25,14), (1,5,3,4)(11,27,12,28,14,30,13,29)(15,26)(16,22,20,23,18,25,19,24)(17,21) >;
 
Copy content gap:G := Group( (1,27,19)(2,30,20,3,28,16,5,29,18,4,26,17)(6,23,12,7,24,13,10,22,11,9,21,15)(8,25,14), (1,5,3,4)(11,27,12,28,14,30,13,29)(15,26)(16,22,20,23,18,25,19,24)(17,21) );
 
Copy content sage:G = PermutationGroup(['(1,27,19)(2,30,20,3,28,16,5,29,18,4,26,17)(6,23,12,7,24,13,10,22,11,9,21,15)(8,25,14)', '(1,5,3,4)(11,27,12,28,14,30,13,29)(15,26)(16,22,20,23,18,25,19,24)(17,21)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(475380604701502184936683243021257382085779139029821721237778573471546204331982692109853044780622441847596438131886534785842888636247553338798192978085321738789749313804086887372567742943231645703124081942029857068488277309954199908365284932954098205501707271045719098229210432357375069990255797612471302684535667850538489881188584741011706432493462810735523836831832050805379660884525179735040947948636703117646464531956194118949985056897798631924221533258225948638040275035012095471677032313987098109265114829547394821706063902272798087108519104515257703010382521897093598139008026802536512356411749957830157246847000340969112595896279316390178050703581321665836573509223791885681369176926411013786684097603001244323174925821455691508601397801259684478392715886466898296610206014546676870491560934882177872879388813227673052553972291446649368824328089586076227428876098549646782735128102473814104201353339787989404382440257849867189262566361527688290454819994314522511229917424368422143,48000000)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.15; i = G.16; j = G.17;
 

Group information

Description:$C_5^6:((C_2\times C_4^3).S_4)$
Order: \(48000000\)\(\medspace = 2^{10} \cdot 3 \cdot 5^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_5^6.C_2^3.C_2^4.C_6.C_4.C_2^2$, of order \(192000000\)\(\medspace = 2^{12} \cdot 3 \cdot 5^{6} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$, $C_5$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 12 15 20 30 40
Elements 1 30575 80000 3696400 15624 2800000 6000000 1703800 8000000 1920000 8553600 3200000 12000000 48000000
Conjugacy classes   1 8 1 39 17 3 24 36 4 4 61 2 16 216
Divisions 1 8 1 27 17 3 12 36 2 3 41 2 8 161
Autjugacy classes 1 6 1 29 12 2 10 21 3 2 38 1 6 132

Minimal presentations

Permutation degree:$30$
Transitive degree:$30$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid d^{4}=f^{20}=g^{10}=h^{5}=i^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 5, 2, 5, 5, 5, 5, 34, 264196338, 19658462, 274942957, 138, 2994019331, 1581669412, 83399334, 2730664444, 943297041, 847736318, 433864450, 34096972, 3848351477, 1513277734, 918115095, 481868660, 40949197, 294, 1381538598, 1033032359, 786542440, 502663197, 4358, 5362344007, 453082392, 1470038729, 670961770, 206964875, 95768572, 5551357, 398, 1225640168, 152843353, 1399226658, 592368935, 293931436, 147969453, 24513158, 3832794, 2066573049, 3585993626, 867396823, 344762610, 201486797, 97550174, 6830711, 26674828, 17170995, 502, 6340233514, 1875265947, 757830260, 581862529, 30075662, 165459191, 3807432, 27006669, 9352016, 554, 814694411, 2350108, 301593645, 1204416062, 13135, 3360, 65393, 4968872076, 2643513629, 1814036998, 137819199, 85924880, 7602497, 795714, 1193531, 14343048, 941625, 108472, 658, 182797, 27417630, 2764608047, 959680, 59404881, 1142498, 761715, 190532, 190549, 742726, 19223, 612807888, 186048065, 16320082, 8160099, 15810133, 1020150, 153167, 102184, 10418, 2614646799, 783360032, 1618944049, 835650, 43520083, 23500900, 21760117, 8268934, 5440151, 544168, 544185, 10212233488, 5992704033, 2580303026, 567240019, 508640084, 254782501, 40460118, 62886535, 28900152, 3121369, 2890186, 332570]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.13, G.15, G.16, G.17]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "f4", "g", "g2", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(475380604701502184936683243021257382085779139029821721237778573471546204331982692109853044780622441847596438131886534785842888636247553338798192978085321738789749313804086887372567742943231645703124081942029857068488277309954199908365284932954098205501707271045719098229210432357375069990255797612471302684535667850538489881188584741011706432493462810735523836831832050805379660884525179735040947948636703117646464531956194118949985056897798631924221533258225948638040275035012095471677032313987098109265114829547394821706063902272798087108519104515257703010382521897093598139008026802536512356411749957830157246847000340969112595896279316390178050703581321665836573509223791885681369176926411013786684097603001244323174925821455691508601397801259684478392715886466898296610206014546676870491560934882177872879388813227673052553972291446649368824328089586076227428876098549646782735128102473814104201353339787989404382440257849867189262566361527688290454819994314522511229917424368422143,48000000); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.13; h := G.15; i := G.16; j := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(475380604701502184936683243021257382085779139029821721237778573471546204331982692109853044780622441847596438131886534785842888636247553338798192978085321738789749313804086887372567742943231645703124081942029857068488277309954199908365284932954098205501707271045719098229210432357375069990255797612471302684535667850538489881188584741011706432493462810735523836831832050805379660884525179735040947948636703117646464531956194118949985056897798631924221533258225948638040275035012095471677032313987098109265114829547394821706063902272798087108519104515257703010382521897093598139008026802536512356411749957830157246847000340969112595896279316390178050703581321665836573509223791885681369176926411013786684097603001244323174925821455691508601397801259684478392715886466898296610206014546676870491560934882177872879388813227673052553972291446649368824328089586076227428876098549646782735128102473814104201353339787989404382440257849867189262566361527688290454819994314522511229917424368422143,48000000)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.15; i = G.16; j = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(475380604701502184936683243021257382085779139029821721237778573471546204331982692109853044780622441847596438131886534785842888636247553338798192978085321738789749313804086887372567742943231645703124081942029857068488277309954199908365284932954098205501707271045719098229210432357375069990255797612471302684535667850538489881188584741011706432493462810735523836831832050805379660884525179735040947948636703117646464531956194118949985056897798631924221533258225948638040275035012095471677032313987098109265114829547394821706063902272798087108519104515257703010382521897093598139008026802536512356411749957830157246847000340969112595896279316390178050703581321665836573509223791885681369176926411013786684097603001244323174925821455691508601397801259684478392715886466898296610206014546676870491560934882177872879388813227673052553972291446649368824328089586076227428876098549646782735128102473814104201353339787989404382440257849867189262566361527688290454819994314522511229917424368422143,48000000)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.15; i = G.16; j = G.17;
 
Permutation group:Degree $30$ $\langle(1,27,19)(2,30,20,3,28,16,5,29,18,4,26,17)(6,23,12,7,24,13,10,22,11,9,21,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,27,19)(2,30,20,3,28,16,5,29,18,4,26,17)(6,23,12,7,24,13,10,22,11,9,21,15)(8,25,14), (1,5,3,4)(11,27,12,28,14,30,13,29)(15,26)(16,22,20,23,18,25,19,24)(17,21) >;
 
Copy content gap:G := Group( (1,27,19)(2,30,20,3,28,16,5,29,18,4,26,17)(6,23,12,7,24,13,10,22,11,9,21,15)(8,25,14), (1,5,3,4)(11,27,12,28,14,30,13,29)(15,26)(16,22,20,23,18,25,19,24)(17,21) );
 
Copy content sage:G = PermutationGroup(['(1,27,19)(2,30,20,3,28,16,5,29,18,4,26,17)(6,23,12,7,24,13,10,22,11,9,21,15)(8,25,14)', '(1,5,3,4)(11,27,12,28,14,30,13,29)(15,26)(16,22,20,23,18,25,19,24)(17,21)'])
 
Transitive group: 30T3909 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_5^6$ $\,\rtimes\,$ $((C_2\times C_4^3).S_4)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^6.C_2^3.C_2^6)$ . $S_3$ $(C_5^6.C_2^4.C_2^3)$ . $S_4$ (2) $(C_5^6:(C_4^3.A_4))$ . $C_4$ $(C_5^6:(C_4^3.A_4))$ . $C_4$ all 25

Elements of the group are displayed as permutations of degree 30.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 40 normal subgroups (26 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_5^6:((C_2\times C_4^3).S_4)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_5^6:(C_2^2\times Q_8).A_4$ $G/G' \simeq$ $C_2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_5^6:((C_2\times C_4^3).S_4)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_5^6$ $G/\operatorname{Fit} \simeq$ $(C_2\times C_4^3).S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_5^6:((C_2\times C_4^3).S_4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_5^6$ $G/\operatorname{soc} \simeq$ $(C_2\times C_4^3).S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3.C_2^5.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^6$

Subgroup diagram and profile

Series

Derived series $C_5^6:((C_2\times C_4^3).S_4)$ $\rhd$ $C_5^6:(C_2^2\times Q_8).A_4$ $\rhd$ $C_5^6.C_2.Q_8^2$ $\rhd$ $C_5^6.C_2^3$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_5^6:((C_2\times C_4^3).S_4)$ $\rhd$ $C_5^6:((C_2\times C_4^3).A_4)$ $\rhd$ $C_5^6:((C_2^2\times C_4^2).A_4)$ $\rhd$ $C_5^6:(C_2^2\times Q_8).A_4$ $\rhd$ $C_5^6.C_2.Q_8^2$ $\rhd$ $C_5^5.D_{10}.C_2^3$ $\rhd$ $C_5^6.C_2^3$ $\rhd$ $C_5^6:C_2$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_5^6:((C_2\times C_4^3).S_4)$ $\rhd$ $C_5^6:(C_2^2\times Q_8).A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $216 \times 216$ character table is not available for this group.

Rational character table

The $161 \times 161$ rational character table is not available for this group.