Properties

Label 48000000.bs.12.A
Order $ 2^{8} \cdot 5^{6} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(4000000\)\(\medspace = 2^{8} \cdot 5^{6} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: not computed
Generators: $\langle(7,10)(8,9)(11,13)(14,15)(16,18,20,17,19)(21,24,22,25,23)(26,27)(28,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_5^6:((C_2\times C_4^3).S_4)$
Order: \(48000000\)\(\medspace = 2^{10} \cdot 3 \cdot 5^{6} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^6.C_2^3.C_2^4.C_6.C_4.C_2^2$
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_5^6:((C_2\times C_4^3).S_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed