Properties

Label 4800.bk.60.y1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 0 & 5 & 1 & 4 \\ 2 & 9 & 10 & 1 \\ 4 & 5 & 2 & 6 \\ 8 & 4 & 9 & 0 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 4 & 9 \\ 4 & 1 & 10 & 4 \\ 1 & 6 & 10 & 0 \\ 3 & 1 & 7 & 1 \end{array}\right), \left(\begin{array}{rrrr} 5 & 8 & 8 & 0 \\ 10 & 6 & 0 & 3 \\ 9 & 0 & 6 & 8 \\ 0 & 2 & 10 & 5 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_{40}.C_2^3$
Normal closure:$C_5\times \GL(2,3):D_5$
Core:$C_{10}$
Minimal over-subgroups:$C_{20}.D_{10}$$C_{10}.C_2^4$$D_8:C_{10}$$Q_{16}:C_{10}$
Maximal under-subgroups:$C_5\times D_4$$C_2\times C_{20}$$C_2\times C_{20}$$C_5\times D_4$$C_5\times Q_8$$D_4:C_2$

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$0$
Projective image$D_{10}\times S_4$