Properties

Label 4800.bk.50.b1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4.A_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 6 & 8 & 8 & 0 \\ 6 & 3 & 8 & 8 \\ 8 & 3 & 9 & 3 \\ 8 & 8 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 6 & 9 & 5 & 9 \\ 0 & 6 & 0 & 5 \\ 8 & 8 & 5 & 2 \\ 0 & 8 & 0 & 5 \end{array}\right), \left(\begin{array}{rrrr} 8 & 8 & 4 & 3 \\ 6 & 6 & 9 & 10 \\ 7 & 9 & 9 & 5 \\ 10 & 3 & 2 & 10 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 8 & 2 & 0 \\ 3 & 7 & 3 & 0 \\ 5 & 3 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 7 & 4 & 7 & 0 \\ 6 & 0 & 7 & 7 \\ 2 & 7 & 0 & 7 \\ 3 & 2 & 5 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times \GL(2,3):C_2^2$
Normal closure:$\SL(2,3).D_{10}$
Core:$C_2\times \SL(2,3)$
Minimal over-subgroups:$\SL(2,3).D_{10}$$(C_2\times Q_8):C_{30}$$\GL(2,3):C_2^2$
Maximal under-subgroups:$C_2\times \SL(2,3)$$C_2\times \SL(2,3)$$\SL(2,3):C_2$$C_4.C_2^3$$C_3\times D_4$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image not computed