Properties

Label 4800.bk.40.b1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times \SL(2,3)$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 6 & 8 & 8 & 0 \\ 6 & 3 & 8 & 8 \\ 8 & 3 & 9 & 3 \\ 8 & 8 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 6 & 9 & 5 & 9 \\ 0 & 6 & 0 & 5 \\ 8 & 8 & 5 & 2 \\ 0 & 8 & 0 & 5 \end{array}\right), \left(\begin{array}{rrrr} 3 & 6 & 6 & 1 \\ 8 & 1 & 3 & 6 \\ 9 & 3 & 2 & 5 \\ 7 & 9 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 7 & 4 & 7 & 0 \\ 6 & 0 & 7 & 7 \\ 2 & 7 & 0 & 7 \\ 3 & 2 & 5 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, and solvable.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_2^2\times C_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_5\times \GL(2,3):D_{10}$
Minimal over-subgroups:$C_5^2\times \SL(2,3)$$C_{10}\times \SL(2,3)$$D_5\times \SL(2,3)$$C_5\times \GL(2,3)$$C_5\times \GL(2,3)$$\SL(2,3):D_5$$C_5:\GL(2,3)$$C_{10}.S_4$
Maximal under-subgroups:$C_5\times Q_8$$C_{30}$$\SL(2,3)$

Other information

Möbius function$8$
Projective image not computed