Properties

Label 4800.bk.300.bd1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rrrr} 6 & 9 & 5 & 9 \\ 6 & 3 & 5 & 4 \\ 8 & 5 & 1 & 0 \\ 8 & 0 & 5 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 8 & 2 & 0 \\ 3 & 7 & 3 & 0 \\ 5 & 3 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 7 & 4 & 7 & 0 \\ 6 & 0 & 7 & 7 \\ 2 & 7 & 0 & 7 \\ 3 & 2 & 5 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{40}$
Normalizer:$C_{40}.C_2^3$
Normal closure:$\GL(2,3):D_5$
Core:$C_2$
Minimal over-subgroups:$C_5\times \OD_{16}$$C_{40}:C_2$$\OD_{16}:C_2$$D_8:C_2$$Q_{16}:C_2$
Maximal under-subgroups:$C_2\times C_4$$C_8$$C_8$

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$0$
Projective image not computed