Subgroup ($H$) information
| Description: | $C_2\times C_{10}$ |
| Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Index: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 10 & 0 & 0 \\
10 & 0 & 10 & 0 \\
0 & 1 & 1 & 1
\end{array}\right), \left(\begin{array}{rrrr}
8 & 4 & 4 & 8 \\
10 & 1 & 2 & 4 \\
8 & 5 & 7 & 7 \\
5 & 0 & 4 & 6
\end{array}\right), \left(\begin{array}{rrrr}
0 & 1 & 1 & 2 \\
5 & 7 & 6 & 1 \\
7 & 6 & 9 & 10 \\
3 & 7 & 6 & 5
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_5\times \GL(2,3):D_{10}$ |
| Order: | \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times A_4\times F_5).C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $24$ |
| Möbius function | $0$ |
| Projective image | $C_5\times \GL(2,3):D_{10}$ |