Properties

Label 4800.bk.12.b1.a1
Order $ 2^{4} \cdot 5^{2} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}.D_{10}$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 6 & 9 & 5 & 9 \\ 0 & 6 & 0 & 5 \\ 8 & 8 & 5 & 2 \\ 0 & 8 & 0 & 5 \end{array}\right), \left(\begin{array}{rrrr} 7 & 8 & 8 & 5 \\ 2 & 8 & 5 & 8 \\ 7 & 4 & 3 & 3 \\ 7 & 7 & 9 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 3 & 6 & 6 & 1 \\ 8 & 1 & 3 & 6 \\ 9 & 3 & 2 & 5 \\ 7 & 9 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 7 & 4 & 7 & 0 \\ 6 & 0 & 7 & 7 \\ 2 & 7 & 0 & 7 \\ 3 & 2 & 5 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_{10}:C_4^2\times S_4$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}:C_4^2\times S_4$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{10}\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times \GL(2,3):D_{10}$
Complements:$D_6$ $D_6$
Minimal over-subgroups:$C_5\times D_5\times \SL(2,3)$$C_{10}^2.C_2^3$$C_{40}.D_{10}$$C_{40}:D_{10}$
Maximal under-subgroups:$Q_8\times C_5^2$$D_5\times C_{20}$$C_5^2:Q_8$$Q_8\times D_5$$Q_8\times C_{10}$

Other information

Möbius function$-6$
Projective image$D_{10}\times S_4$