Properties

Label 4800.bk.10.l1.a1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,3):C_{10}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 6 & 8 & 8 & 0 \\ 6 & 3 & 8 & 8 \\ 8 & 3 & 9 & 3 \\ 8 & 8 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 6 & 9 & 5 & 9 \\ 0 & 6 & 0 & 5 \\ 8 & 8 & 5 & 2 \\ 0 & 8 & 0 & 5 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 \\ 10 & 0 & 10 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 0 & 7 & 0 & 8 \\ 8 & 8 & 6 & 6 \\ 8 & 2 & 6 & 4 \\ 1 & 4 & 4 & 8 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 7 & 4 & 7 & 0 \\ 6 & 0 & 7 & 7 \\ 2 & 7 & 0 & 7 \\ 3 & 2 & 5 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2^5.D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_2^5.D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times \GL(2,3):C_2^2$
Normal closure:$C_5\times \GL(2,3):D_5$
Core:$C_5\times \GL(2,3)$
Minimal over-subgroups:$C_5\times \GL(2,3):D_5$$C_5\times \GL(2,3):C_2^2$
Maximal under-subgroups:$C_5\times \GL(2,3)$$C_{10}\times \SL(2,3)$$C_{10}.S_4$$Q_{16}:C_{10}$$C_{15}:D_4$$\GL(2,3):C_2$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$D_{10}\times S_4$