Properties

Label 4800.bk.10.h1.a1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,3):D_5$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 8 & 2 & 0 \\ 3 & 7 & 3 & 0 \\ 5 & 3 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 0 & 6 & 0 & 10 \\ 1 & 4 & 9 & 1 \\ 1 & 2 & 9 & 4 \\ 7 & 9 & 6 & 9 \end{array}\right), \left(\begin{array}{rrrr} 3 & 6 & 6 & 1 \\ 8 & 1 & 3 & 6 \\ 9 & 3 & 2 & 5 \\ 7 & 9 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 6 & 8 & 8 & 0 \\ 6 & 3 & 8 & 8 \\ 8 & 3 & 9 & 3 \\ 8 & 8 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 6 & 9 & 5 & 9 \\ 0 & 6 & 0 & 5 \\ 8 & 8 & 5 & 2 \\ 0 & 8 & 0 & 5 \end{array}\right), \left(\begin{array}{rrrr} 7 & 4 & 7 & 0 \\ 6 & 0 & 7 & 7 \\ 2 & 7 & 0 & 7 \\ 3 & 2 & 5 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and solvable.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{10}\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times \GL(2,3):D_{10}$
Complements:$C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$
Minimal over-subgroups:$C_5\times \GL(2,3):D_5$$\GL(2,3):D_{10}$
Maximal under-subgroups:$C_5\times \GL(2,3)$$\SL(2,3):D_5$$C_{10}.S_4$$C_8.D_{10}$$C_6.D_{10}$$\GL(2,3):C_2$

Other information

Möbius function$1$
Projective image not computed