Properties

Label 480.81.2.b1.b1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}:C_{24}$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $ab, c^{3}, c^{10}, a^{2}b^{6}, b^{2}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{30}.C_4^2$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2\times C_4\times C_2^5.C_2^2)$
$\operatorname{Aut}(H)$ $D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\operatorname{res}(S)$$D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_{30}.C_4^2$
Minimal over-subgroups:$C_{30}.C_4^2$
Maximal under-subgroups:$C_2\times C_{60}$$C_5:C_{24}$$C_5:C_{24}$$C_{10}:C_8$$C_2\times C_{24}$
Autjugate subgroups:480.81.2.b1.a1

Other information

Möbius function$-1$
Projective image$D_{10}$