Subgroup ($H$) information
| Description: | $C_{10}:C_{24}$ | 
| Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) | 
| Index: | \(2\) | 
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Generators: | $a^{2}, c^{3}, c^{10}, b^{2}, b, b^{4}$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{30}.C_4^2$ | 
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) | 
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Exponent: | \(2\) | 
| Automorphism Group: | $C_1$, of order $1$ | 
| Outer Automorphisms: | $C_1$, of order $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{15}:(C_2^3.C_2^6)$ | 
| $\operatorname{Aut}(H)$ | $D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $W$ | $D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) | 
Related subgroups
| Centralizer: | $C_2\times C_{12}$ | ||||
| Normalizer: | $C_{30}.C_4^2$ | ||||
| Minimal over-subgroups: | $C_{30}.C_4^2$ | ||||
| Maximal under-subgroups: | $C_2\times C_{60}$ | $C_5:C_{24}$ | $C_5:C_{24}$ | $C_{10}:C_8$ | $C_2\times C_{24}$ | 
Other information
| Möbius function | $-1$ | 
| Projective image | $S_3\times D_5$ | 
