Properties

Label 480.1201.10.a1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:A_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3)(2,6)(4,5)(7,8), (3,5,4)(6,8,7), (1,5)(2,8)(3,4)(6,7), (2,7)(6,8), (2,6)(7,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^4:D_{15}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $D_5$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times \POPlus(4,3)$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $\AGammaL(2,4)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$\POPlus(4,3)$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2^2:S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_2^4:D_{15}$
Complements:$D_5$
Minimal over-subgroups:$C_2^4:C_{15}$$C_2^2:S_4$
Maximal under-subgroups:$C_2^4$$A_4$$A_4$$A_4$$A_4$

Other information

Möbius function$5$
Projective image$C_2^4:D_{15}$