Subgroup ($H$) information
| Description: | $A_4$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(1,5)(2,6)(3,4)(7,8), (3,5,4)(6,8,7), (1,4)(2,8)(3,5)(6,7)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_2^4:D_{15}$ |
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times \POPlus(4,3)$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\operatorname{res}(S)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| $W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $4$ |
| Möbius function | $-5$ |
| Projective image | $C_2^4:D_{15}$ |