Properties

Label 480.1199.12.h1
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_4$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 19 & 3 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 19 & 0 \\ 10 & 19 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^3:D_{30}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_4^2$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^3:D_{10}$
Normal closure:$C_{10}:S_4$
Core:$C_5$
Minimal over-subgroups:$C_{10}:D_4$$C_{10}:D_4$
Maximal under-subgroups:$C_2\times C_{10}$$D_{10}$$C_5:C_4$$D_4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image$C_2^3:D_{30}$