Properties

Label 480.1097.3.a1.a1
Order $ 2^{5} \cdot 5 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times D_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(3\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, d^{12}, c, d^{15}, b, d^{30}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{12}:D_{10}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^2.C_2^6)$
$\operatorname{Aut}(H)$ $F_5\times C_2^5:D_4$, of order \(5120\)\(\medspace = 2^{10} \cdot 5 \)
$\operatorname{res}(S)$$D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4\times D_{10}$
Normal closure:$D_{12}:D_{10}$
Core:$D_4\times D_5$
Minimal over-subgroups:$D_{12}:D_{10}$
Maximal under-subgroups:$D_4\times D_5$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_{10}:D_4$$C_{10}:D_4$$D_4\times D_5$$D_4\times D_5$$D_4\times D_5$$D_4\times D_5$$D_4\times C_{10}$$D_4\times D_5$$C_4\times D_{10}$$C_2\times D_{20}$$D_4\times D_5$$D_4\times D_5$$C_2^2\times D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$D_6\times D_{10}$