Properties

Label 480.1050.5.a1
Order $ 2^{5} \cdot 3 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4\times C_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(5\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, b^{2}, a^{2}, b, c^{15}, c^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_{30}:C_4^2$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:D_4\times F_5$, of order \(2560\)\(\medspace = 2^{9} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^7:S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_4\times C_{12}$
Normalizer:$C_2\times C_4\times C_{12}$
Normal closure:$C_{30}:C_4^2$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_{30}:C_4^2$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2^2\times C_{12}$$C_4\times C_{12}$$C_2\times C_4^2$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$F_5$