Properties

Label 48.33.6.b1.a1
Order $ 2^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 3 & 0 \\ 0 & 2 \end{array}\right), \left(\begin{array}{rr} 4 & 0 \\ 0 & 4 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 4 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\SL(2,3):C_2$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_4:C_2$
Normal closure:$D_4:C_2$
Core:$C_4$
Minimal over-subgroups:$D_4:C_2$
Maximal under-subgroups:$C_4$$C_2^2$$C_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$A_4$