Properties

Label 476.1.7.a1.a1
Order $ 2^{2} \cdot 17 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{68}$
Order: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Index: \(7\)
Exponent: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Generators: $a, b^{7}, a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_7:C_{68}$
Order: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{14}:C_{48}$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{68}$
Normalizer:$C_{68}$
Normal closure:$C_7:C_{68}$
Core:$C_{34}$
Minimal over-subgroups:$C_7:C_{68}$
Maximal under-subgroups:$C_{34}$$C_4$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$D_7$