Properties

Label 47520.a.11880.d1.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(11880\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,8)(2,7)(5,6)(9,11), (1,2,8,7)(5,9,6,11)(12,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $S_3\times M_{11}$
Order: \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times M_{11}$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_2\times \SD_{16}$
Normal closure:$S_3\times M_{11}$
Core:$C_1$
Minimal over-subgroups:$C_3^2:C_4$$C_3^2:C_4$$F_5$$C_3:C_4$$C_2\times C_4$$Q_8$$D_4$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this conjugacy class$1485$
Möbius function$0$
Projective image$S_3\times M_{11}$