Properties

Label 466560.s.90.BA
Order $ 2^{6} \cdot 3^{4} $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_3^3:S_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,5)(2,6)(3,4)(7,8)(10,15,12,14)(11,13), (1,3)(2,6)(7,8)(11,12)(13,14,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_6^3.(C_2^2\times S_4)$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$W$$C_2^2\times C_3^3:S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^3:(C_2\times S_4)$
Normal closure:$(C_3^3\times A_6):S_4$
Core:$C_3^3:A_4$
Minimal over-subgroups:$C_3^3:S_4^2$$C_6^3:(C_2\times S_4)$
Maximal under-subgroups:$C_4\times C_3^3:S_4$$(C_3^2\times C_{12}):S_4$$C_3^3:\GL(2,\mathbb{Z}/4)$$C_2^2\times C_3^3:S_4$$D_4\times C_3^3:A_4$$D_6^2:D_6$$C_3\wr S_3\times D_4$

Other information

Number of subgroups in this autjugacy class$45$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$