Properties

Label 466560.s.180.CQ
Order $ 2^{5} \cdot 3^{4} $
Index $ 2^{2} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3^2\times C_{12}):S_4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(10,12,11), (7,8)(13,15), (13,14,15), (1,4)(2,6)(3,5)(7,11)(8,10)(9,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $D_4\times S_3\wr S_3$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$W$$C_2^2\times C_3^3:S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^3:(C_2\times S_4)$
Normal closure:$(C_3^3\times A_6):S_4$
Core:$C_3^3:A_4$
Minimal over-subgroups:$C_3^4:C_{12}:S_4$$C_6:S_3^2:D_{12}$$D_4\times C_3^3:S_4$$D_4\times C_3^3:S_4$
Maximal under-subgroups:$C_2\times C_3^3:S_4$$C_4\times C_3^3:A_4$$C_{12}:\SOPlus(4,2)$

Other information

Number of subgroups in this autjugacy class$45$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$