Properties

Label 466560.s.12.K
Order $ 2^{5} \cdot 3^{5} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:C_4\times A_6$
Order: \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,6)(2,3)(8,9)(10,15,12,14)(11,13), (10,12,11), (13,14,15), (1,6,2,5)(3,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $(S_3\times F_9).C_2.A_6.C_2^2$
$W$$S_3^2:S_3.A_6.C_2$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3^2:S_3.A_6.C_2$
Normal closure:$A_6\times C_3^3:S_4$
Core:$C_3^3\times A_6$
Minimal over-subgroups:$C_3^3:C_4\times S_6$$S_3^2:S_3\times A_6$$(C_3^3\times A_6):D_4$
Maximal under-subgroups:$C_3^2:C_6\times A_6$$C_3^2:C_4\times A_6$$A_5\times C_3^3:C_4$$C_3:C_4\times A_6$$C_3^5:C_4^2$$C_3^3:C_4\times S_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$