Properties

Label 46656.hu.8.BN
Order $ 2^{3} \cdot 3^{6} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_3^2:C_2^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,14,16)(2,9,18), (1,2)(9,14)(15,17)(16,18), (1,17,16,5,14,15)(2,18,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and rational.

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_3^4:D_6\wr C_2$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$W$$\He_3^2:C_2^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times C_3^4.C_3^2.C_2^4$
Normal closure:$C_2\times C_3^4.C_3^2.C_2^4$
Core:$\He_3^2:C_2$
Minimal over-subgroups:$C_3^4.D_6^2$$C_3^4.D_6^2$
Maximal under-subgroups:$C_3^4:S_3^2$$\He_3.\He_3.C_2^2$$C_3^4.C_6^2$$C_3^4.S_3^2$$(C_3^2\times \He_3).D_6$$C_3^2:S_3^3$$C_3^2:S_3^3$$C_3^2.S_3^3$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image$C_6^2:S_3^2:S_3^2$