Properties

Label 46656.hu.24.GN
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2.S_3^3$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,18,15)(2,17,16)(3,12)(4,7)(5,14,9)(6,10)(8,11)(19,22)(20,21), (1,17,16,5,14,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and rational.

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_3^4:(S_3\times D_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$W$$C_3^2.S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times C_3^3.D_6^2$
Normal closure:$C_2\times C_3^4.C_3^2.C_2^4$
Core:$C_3^4:C_3$
Minimal over-subgroups:$\He_3^2:C_2^3$$C_3^3:D_6^2$$C_3^3:D_6^2$
Maximal under-subgroups:$C_3^3:S_3^2$$C_3^4:D_6$$C_3^3:S_3^2$$C_3^4:D_6$$C_3^3:S_3^2$

Other information

Number of subgroups in this autjugacy class$96$
Number of conjugacy classes in this autjugacy class$16$
Möbius function not computed
Projective image$C_6^2:S_3^2:S_3^2$