Properties

Label 46656.hu.6.A
Order $ 2^{5} \cdot 3^{5} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:D_6\wr C_2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,3,2,4)(5,6)(7,16,11,18)(8,17,12,15)(9,13,14,10)(19,20)(21,22), (1,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_3^4.C_6^2.C_2^5.C_2$
$W$$\He_3^2:(C_2^2\times D_4)$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2:S_3^2:S_3^2$
Complements:$S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$
Minimal over-subgroups:$C_3^4.C_6^2.C_2^3$$C_6^2:S_3^2:D_6$
Maximal under-subgroups:$C_2\times C_3^4:C_6.C_2^2$$(C_3\times C_6^2):S_3^2$$C_3^3:C_6^2:C_4$$C_3^4:C_6:D_4$$C_3^3:S_3^2:C_4$$C_6^2:\SOPlus(4,2)$$D_6^2:S_3$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_{1205}:C_{120}$