Properties

Label 46656.hu.23328.A
Order $ 2 $
Index $ 2^{5} \cdot 3^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(2\)
Generators: $\langle(19,22)(20,21)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $\He_3^2:(C_2^2\times D_4)$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_3^4.C_3^2.C_2^6.C_2^2$
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6^2:S_3^2:S_3^2$
Normalizer:$C_6^2:S_3^2:S_3^2$
Minimal over-subgroups:$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{1205}:C_{120}$