Properties

Label 46656.hu.2.H
Order $ 2^{5} \cdot 3^{6} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:D_6\wr C_2$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,18,14,2,16,9)(4,12,7,6,13,8)(10,11)(15,17), (1,16,14)(2,9,18)(3,8,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:S_3^2:S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_3^4.D_6^2.C_2^3$
$W$$C_{1205}:C_{120}$, of order \(144600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 241 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2:S_3^2:S_3^2$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_6^2:S_3^2:S_3^2$
Maximal under-subgroups:$C_2\times \He_3^2:D_4$$C_3^4.C_3^2.C_2^4$$(C_2\times \He_3^2).D_4$$C_2\times \He_3^2:D_4$$\He_3^2:(C_2\times D_4)$$(C_2\times \He_3^2).D_4$$C_3^4:C_6.D_{12}$$C_3^3:D_6\wr C_2$$C_3^3:D_6\wr C_2$$(C_3\times S_3^2):D_{12}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_{1205}:C_{120}$