Properties

Label 46656.ek.9.C
Order $ 2^{6} \cdot 3^{4} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(S_3\times C_6^2):S_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}c^{4}d^{2}f^{4}, e^{3}, c^{4}d^{4}e^{2}, c^{2}d^{2}, f^{3}, b^{3}, b^{2}c^{3}e^{3}f^{3}, d^{3}e^{3}f^{3}, c^{3}d^{3}, a^{2}c^{4}d^{3}e^{3}f$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^4.S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.\OD_{16}$, of order \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $(C_2^2\times C_6^2).D_6^2$
$W$$(S_3\times C_6^2):S_4$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$(S_3\times C_6^2):S_4$
Normal closure:$C_6^4.S_3^2$
Core:$C_2\times C_6^3$
Minimal over-subgroups:$C_6^4:D_6$
Maximal under-subgroups:$C_3\times C_6^2:S_4$$(C_2\times C_6^3):C_6$$C_2^4.C_3^3:S_3$$C_6^3.C_2^3$$(C_2\times C_6^2):S_4$$(C_6\times D_6):S_4$$C_6^2:S_3^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.S_3^2$