Properties

Label 4632.h.24.a1.a1
Order $ 193 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}$
Order: \(193\)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(193\)
Generators: $b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $193$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{1544}:C_3$
Order: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Quotient group ($Q$) structure

Description: $C_{24}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{193}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $C_{192}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{192}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(772\)\(\medspace = 2^{2} \cdot 193 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_{1544}$
Normalizer:$C_{1544}:C_3$
Complements:$C_{24}$
Minimal over-subgroups:$C_{193}:C_3$$C_{386}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{1544}:C_3$