Properties

Label 4632.h.12.a1.a1
Order $ 2 \cdot 193 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{386}$
Order: \(386\)\(\medspace = 2 \cdot 193 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(386\)\(\medspace = 2 \cdot 193 \)
Generators: $a^{12}, b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{1544}:C_3$
Order: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{193}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $C_{192}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{192}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(772\)\(\medspace = 2^{2} \cdot 193 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_{1544}$
Normalizer:$C_{1544}:C_3$
Minimal over-subgroups:$C_{193}:C_6$$C_{772}$
Maximal under-subgroups:$C_{193}$$C_2$

Other information

Möbius function$0$
Projective image$C_{193}:C_{12}$