Properties

Label 4620.a.55.a1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{42}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(55\)\(\medspace = 5 \cdot 11 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $a, b^{770}, b^{660}, b^{1155}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{11}\times D_{210}$
Order: \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5:F_5^2$, of order \(100800\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $D_6\times F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$D_6\times F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$D_{21}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{11}\times D_{42}$
Normal closure:$D_{210}$
Core:$C_{42}$
Minimal over-subgroups:$C_{11}\times D_{42}$$D_{210}$
Maximal under-subgroups:$C_{42}$$D_{21}$$D_{21}$$D_{14}$$D_6$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$C_{11}\times D_{105}$