Properties

Label 4620.a.10.b1.b1
Order $ 2 \cdot 3 \cdot 7 \cdot 11 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times D_{21}$
Order: \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \)
Generators: $ab^{1045}, b^{770}, b^{660}, b^{210}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{11}\times D_{210}$
Order: \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5:F_5^2$, of order \(100800\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_{10}\times S_3\times F_7$
$\operatorname{res}(S)$$C_5^2:(C_2\times F_5^2)$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{21}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{11}\times D_{42}$
Normal closure:$C_{11}\times D_{105}$
Core:$C_{231}$
Minimal over-subgroups:$C_{11}\times D_{105}$$C_{11}\times D_{42}$
Maximal under-subgroups:$C_{231}$$C_{11}\times D_7$$S_3\times C_{11}$$D_{21}$
Autjugate subgroups:4620.a.10.b1.a1

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$D_{210}$