Subgroup ($H$) information
Description: | $(C_2^3\times C_{12}).D_4$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$\langle(1,3,2)(4,7)(5,6)(8,14)(9,13)(10,11)(12,15), (4,7)(5,6), (11,13)(12,14) \!\cdots\! \rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $(C_6\times \GL(2,\mathbb{Z}/4)).D_4$ |
Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_6\times A_4).C_2^6.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_3:(C_2^8.C_2^5)$ |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | not computed |
Projective image | not computed |