Properties

Label 4608.ti
Order \( 2^{9} \cdot 3^{2} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $15$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 15 | (1,3,2)(4,7,6)(8,15)(12,14), (1,3,2)(4,7,5,6)(8,9,15,10)(11,14)(12,13), (4,5,7), (4,5)(6,7), (4,7)(5,6), (2,3)(4,7,6,5)(9,13)(10,11), (1,2,3)(4,5)(11,13)(12,14), (1,3,2)(4,6,7,5)(9,10)(11,13), (1,3,2), (5,7), (1,2)(5,7)(8,14)(12,15) >;
 
Copy content gap:G := Group( (1,3,2)(4,7,6)(8,15)(12,14), (1,3,2)(4,7,5,6)(8,9,15,10)(11,14)(12,13), (4,5,7), (4,5)(6,7), (4,7)(5,6), (2,3)(4,7,6,5)(9,13)(10,11), (1,2,3)(4,5)(11,13)(12,14), (1,3,2)(4,6,7,5)(9,10)(11,13), (1,3,2), (5,7), (1,2)(5,7)(8,14)(12,15) );
 
Copy content sage:G = PermutationGroup(['(1,3,2)(4,7,6)(8,15)(12,14)', '(1,3,2)(4,7,5,6)(8,9,15,10)(11,14)(12,13)', '(4,5,7)', '(4,5)(6,7)', '(4,7)(5,6)', '(2,3)(4,7,6,5)(9,13)(10,11)', '(1,2,3)(4,5)(11,13)(12,14)', '(1,3,2)(4,6,7,5)(9,10)(11,13)', '(1,3,2)', '(5,7)', '(1,2)(5,7)(8,14)(12,15)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(993912799911017420591972667903606184723934175946483172802421606861754605942483739637032558340119571545762410100592503773204,4608)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11;
 

Group information

Description:$(C_6\times \GL(2,\mathbb{Z}/4)).D_4$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$(C_6\times A_4).C_2^6.C_2^3$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 359 26 920 694 768 1456 384 4608
Conjugacy classes   1 20 3 23 28 8 35 2 120
Divisions 1 20 3 19 24 4 18 1 90
Autjugacy classes 1 16 3 17 22 4 17 1 81

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 8 12 16 24
Irr. complex chars.   16 28 16 20 20 7 10 1 2 120
Irr. rational chars. 8 16 8 18 12 10 12 2 4 90

Minimal presentations

Permutation degree:$15$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 24 24
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid b^{4}=c^{4}=d^{6}=e^{6}=f^{2}=g^{2}=[a,f]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([11, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 46508, 76077, 56, 58787, 14974, 6625, 124, 64244, 63815, 214373, 115648, 38571, 10862, 14437, 192, 83782, 135537, 6815, 19762, 321031, 10600, 10094, 5881, 260, 9545, 23802, 9964, 3045]); a,b,c,d,e,f,g := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.11]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g"]);
 
Copy content gap:G := PcGroupCode(993912799911017420591972667903606184723934175946483172802421606861754605942483739637032558340119571545762410100592503773204,4608); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.11;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(993912799911017420591972667903606184723934175946483172802421606861754605942483739637032558340119571545762410100592503773204,4608)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(993912799911017420591972667903606184723934175946483172802421606861754605942483739637032558340119571545762410100592503773204,4608)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11;
 
Permutation group:Degree $15$ $\langle(1,3,2)(4,7,6)(8,15)(12,14), (1,3,2)(4,7,5,6)(8,9,15,10)(11,14)(12,13), (4,5,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 15 | (1,3,2)(4,7,6)(8,15)(12,14), (1,3,2)(4,7,5,6)(8,9,15,10)(11,14)(12,13), (4,5,7), (4,5)(6,7), (4,7)(5,6), (2,3)(4,7,6,5)(9,13)(10,11), (1,2,3)(4,5)(11,13)(12,14), (1,3,2)(4,6,7,5)(9,10)(11,13), (1,3,2), (5,7), (1,2)(5,7)(8,14)(12,15) >;
 
Copy content gap:G := Group( (1,3,2)(4,7,6)(8,15)(12,14), (1,3,2)(4,7,5,6)(8,9,15,10)(11,14)(12,13), (4,5,7), (4,5)(6,7), (4,7)(5,6), (2,3)(4,7,6,5)(9,13)(10,11), (1,2,3)(4,5)(11,13)(12,14), (1,3,2)(4,6,7,5)(9,10)(11,13), (1,3,2), (5,7), (1,2)(5,7)(8,14)(12,15) );
 
Copy content sage:G = PermutationGroup(['(1,3,2)(4,7,6)(8,15)(12,14)', '(1,3,2)(4,7,5,6)(8,9,15,10)(11,14)(12,13)', '(4,5,7)', '(4,5)(6,7)', '(4,7)(5,6)', '(2,3)(4,7,6,5)(9,13)(10,11)', '(1,2,3)(4,5)(11,13)(12,14)', '(1,3,2)(4,6,7,5)(9,10)(11,13)', '(1,3,2)', '(5,7)', '(1,2)(5,7)(8,14)(12,15)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $(C_2^5:D_6)$ . $D_6$ $C_2^5$ . $(D_6:D_6)$ $(C_2^4.D_6)$ . $D_{12}$ $C_2^4$ . $(D_6.D_{12})$ all 101

Elements of the group are displayed as permutations of degree 15.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 111 normal subgroups (107 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^3:C_6^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2\times D_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3.D_4^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $120 \times 120$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $90 \times 90$ rational character table.